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Abstract

Scattering of femtosecond laser pulses on resonant transmission and reflection gratings made of dispersive (Drude

metals) and dielectric materials is studied by a time-domain numerical algorithm for Maxwell’s theory of linear passive

(dispersive and absorbing) media. The algorithm is based on the Hamiltonian formalism in the framework of which

Maxwell’s equations for passive media are shown to be equivalent to the first-order equation, oW=ot ¼ HW, whereH is

a linear differential operator (Hamiltonian) acting on a multi-dimensional vector W built of the electromagnetic in-

ductions and auxiliary matter fields describing the medium response. The initial value problem is then solved by means

of a modified time leapfrog method in combination with the Fourier pseudospectral method applied on a non-uniform

grid that is constructed by a change of variables and designed to enhance the sampling efficiency near medium inter-

faces. The algorithm is shown to be highly accurate at relatively low computational costs. An excellent agreement with

previous theoretical and experimental studies of the gratings is demonstrated by numerical simulations using our al-

gorithm. In addition, our algorithm allows one to see real time dynamics of long living resonant excitations of elec-

tromagnetic fields in the gratings in the entire frequency range of the initial wide band wave packet as well as formation

of the reflected and transmitted wave fronts.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The purpose of the present study is twofold. First, we test a novel time-domain algorithm for Maxwell’s

theory of linear, passive (dispersive and absorbing) media. The algorithm is based on (i) the Hamiltonian

formalism for evolution differential equations [1], (ii) the time leapfrog scheme [2], and (iii) the Fourier

pseudospectral method [3] in combination with a change of variables that enhances the spatial grid reso-

lution in designated domains (in the vicinity of medium interfaces) and, thereby, prevents the loss of ac-

curacy due to the aliasing problem of the Fourier transform, while keeping the total spatial grid size fixed
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[4,5]. Boundary conditions at medium interfaces are not fixed in the algorithm, but rather medium pa-

rameters are allowed to have spatial discontinuities so that the correct boundary conditions are enforced

dynamically [6], similarly to the wave packet method for quantum mechanical systems with discontinuous
potentials. Although, each of these three main ingredients of our algorithm have been used individually in

various computational problems in electromagnetism and quantum mechanics, to our knowledge they have

never been put together in applications to numerical simulations of propagation of wideband electro-

magnetic pulses in passive media and their scattering on targets made of dispersive and absorbing materials.

By combining these methods, we have obtained an efficient, true time-domain algorithm that is highly

accurate, which is a known virtue of pseudospectral methods for solving partial differential equations [7].

An essential advantage of time-domain numerical methods is that one can see all the immediate effects

the medium and targets have on the propagating wideband wave packet. Yet, a single simulation of the
scattering of a wideband wave packet is sufficient to determine some basic electromagnetic properties of the

target, e.g., transmission and reflection coefficients, in the entire frequency range of the initial wave packet.

It has been reported [8] that a periodic thin-film metallic grating (either with holes or one-dimensional

slits) can transmit more light at certain wavelengths than the projected area of the holes (or slits) in the

grating would suggest, while at other wavelengths transmission is almost fully blocked. There is an ongoing

discussion about the mechanism of such anomalous transmission. Among suggested mechanisms are the

formation of dynamical diffraction resonances in periodic metallic structures [9], surface plasmons whose

resonances are enhanced by the array of holes in the grating [10], and, specific to the slit gratings, open
Fabry–P�erot resonant cavities [11]. Since all approaches produce essentially identical predictions for the

transmission and reflection coefficients (the far-field) of the slit grating, it is, perhaps, necessary to have a

closer look at the details of electromagnetic field dynamics in the vicinity of the grating where deviations of

theoretical predictions of a particular mechanism from the actual exact solution of Maxwell’s equations

might occur (see, e.g., the discussion in a recent work [12]). This is our second motivation for the present

study. We apply our algorithm to scattering of a wideband electromagnetic pulse on various transmission

and reflection slit gratings (dispersive metallic and purely dielectric ones). Our time-domain algorithm

allows one to observe in detail (in real time) the formation and decay of long-living resonant excitations of
electromagnetic fields as well as the formation of resonant transmission and reflection wave fronts. Thanks

to the use of the Fourier pseudospectral method in combination with non-uniform grids, an extremely high

accuracy of simulations can be achieved in the entire simulation volume and time span at relatively low

computational costs. We think that these virtues of our time-domain algorithm would be useful for nu-

merical studies of electromagnetic properties of other nanostructure materials [13].

The paper is organized as follows. Section 2 is devoted to the Hamiltonian formalism applied to

Maxwell’s theory for general passive linear media. Maxwell’s equations for electromagnetic fields and

medium responses are shown to be equivalent to a first order evolution differential equation similar to the
Schr€odinger equation in quantum mechanics. The wave function is a multidimensional column whose

components are electromagnetic fields and auxiliary fields describing the medium response. The Hamil-

tonian operator is a linear differential operator acting on a Hilbert space spanned by square integrable wave

functions. In Section 3, the formalism is applied to two examples, the multi-resonant Lorentz model, which

is widely used to describe passive media, and a simple model of the Earth’s ionosphere. In Section 4, we

establish a relation between the norm of wave functions and the electromagnetic energy. The discussion is

limited to the Lorentz model and non-dispersive dielectric media. Section 5 is devoted to a general de-

scription of our algorithm. In particular, we show how the action of the Hamiltonian on wave functions is
defined on a grid by means of the fast Fourier transform method. We prove that the Gauss law is enforced

in the grid representation at no extra computational cost in our algorithm. Then we discuss how the

sampling efficiency of the fast Fourier method can be enhanced in designated spatial regions (typically at

medium interfaces) by changing variables on the grid. Time evolution is carried out by a modified leapfrog

method applied to the Schr€odinger equation. We show that the conventional leapfrog method leads to an
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unstable algorithm for media with absorption and propose a general method to modify the leapfrog scheme

to obtain a conditionally stable algorithm. Finally, we give an explicit realization of our algorithm in the

case of the multi-resonant Lorentz model. Section 6 contains a detailed description of the actual compu-
tational scheme used in our simulations of extraordinary transmission and reflection gratings. We analyze

the stability of the scheme using our general approach developed in Section 5. Section 7 is devoted to our

numerical results. We also compare them with previous theoretical and experimental studies. Section 8

contains a brief conclusion.
2. Maxwell’s theory for passive media in the Hamiltonian formalism

Let E and H be electric and magnetic fields, respectively, D and B the corresponding inductions, and P

andM the medium polarization and magnetization vectors. Boldface letters denote three-vector fields in R3.

Propagation of an electromagnetic wave packet in passive linear media in the absence of external radiating

sources is described by the following set of equations [6]:

_wIðtÞ ¼ H0w
F ðtÞ; ð2:1Þ
wIðtÞ ¼ wF ðtÞ þ wRðtÞ ¼ wF ðtÞ þ
Z t

0

dsvðt � sÞwF ðsÞ; ð2:2Þ
wI ¼ D

B

� �
; wF ¼ E

H

� �
; wR ¼ P

M

� �
; H0 ¼

0 c$�
�c$� 0

� �
; ð2:3Þ

where c is the speed of light in vacuum, the overdot denotes the partial derivative o=ot with respect to the

time t, and the spatial argument of the fields, denoted below by r, is suppressed. For generic anisotropic

media, the medium response function vðtÞ is regarded as a linear operator (matrix) acting on the compo-

nents of wF . For isotropic media, it is a scalar. The response function is also position dependent for non-

homogeneous media. Let wIð0Þ ¼ wF ð0Þ be an initial wave packet with finite energy (finite L2ðR3) norm).
We are interested in finite norm solutions of the initial value problem for Maxwell’s equations (2.1) subject

to the constraints (including the Gauss law)

$ � BðtÞ ¼ $ �DðtÞ ¼ 0: ð2:4Þ

The response function vðtÞ is usually deduced from a microscopic model of the medium in question [6].

Therefore, it is natural to assume that vðtÞ is a fundamental solution of some linear evolution differential

equation so that

Ltw
RðtÞ ¼ xpw

F ðtÞ; ð2:5Þ

where Lt is a linear differential operator (a polynomial in o=ot) and xp describes a coupling between the

applied electromagnetic fields and the matter. In general, xp is a position dependent matrix. Causality of

the medium response requires that the Fourier transform ~vðxÞ of the response function should have poles

only in the lower part of the complex plane of x [6] so that the Fourier transform of (2.2) reads
~wRðxÞ ¼ ~vðxÞ~wF ðxÞ. By taking the Fourier transform of Eq. (2.5), one finds that ~LðxÞ~wRðxÞ ¼ xp

~wF ðxÞ
and, hence, Lt ¼ xp½~vðio=otÞ��1

. If the response function is known from measurements in the frequency

domain, components of ½~vðxÞ��1
can always be approximated by a polynomial with sufficient accuracy in

the frequency range of interest.

Now the Hamiltonian formalism [1] can be applied to (2.5) to transform it to an equivalent system of

first-order differential equations
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_nðtÞ ¼ HF
MnðtÞ þVMFw

F ðtÞ; ð2:6Þ

where n is a column of auxiliary fields which are linear combinations of the response field and its time
derivatives, save for the one of highest order. There exists a linear operator R such that wRðtÞ ¼ RnðtÞ. Its
explicit form depends on the details of going over to the Hamiltonian formalism. One can, for instance,

identify the first component of n with wR. In this case, R projects the column n onto its first component. The

response function can be expressed through the operators HF
M , VMF and R by making use of the funda-

mental solution of Eq. (2.6)

vðtÞ ¼ hðtÞReH
F
M tVMF ; ð2:7Þ

where hðtÞ is the Heaviside function. Eq. (2.7) can be regarded as a condition on possible choices of the
operators HF

M and VMF and R.

Applying R to (2.6) we find

_wRðtÞ ¼ RHF
MnðtÞ; ð2:8Þ

where the relation RVMF ¼ 0 has been used. It is not hard to be convinced that the latter relation holds

when the first component of n coincides with wR. Any other choice of n can be obtained by a canonical

transformation [1] which is a linear non-singular transformation of auxiliary fields,

n ! SMn; det SM 6¼ 0: ð2:9Þ

According to (2.6) and (2.7), R ! RS�1
M , HF

M ! SMH
F
MS

�1
M , and VMF ! SMVMF and, therefore, the

condition RVMF ¼ 0 remains true in the new basis of auxiliary fields. Denoting VFM ¼ �RHF
M and

substituting (2.2) and (2.8) into Maxwell’s evolution equations (2.1), the latter can be written in the

Hamiltonian form

_wF ðtÞ ¼ H0w
F ðtÞ þVFMnðtÞ: ð2:10Þ

Finally, the electromagnetic and auxiliary fields are unified into one column (wave function) so that Eqs.

(2.10) and (2.6) can be represented as a single first-order evolution equation

_WF ðtÞ ¼ HFWF ðtÞ; ð2:11Þ
WF ¼ wF

n

� �
; HF ¼ H0 VFM

VMF HF
M

� �
: ð2:12Þ

The index F indicates that electromagnetic fields are used as independent electromagnetic degrees of

freedom. We shall refer to (2.12) as a field representation. Accordingly, an induction representation is

obtained by a similarity transformation

WI ¼ wI

n

� �
¼ SwF ; S ¼ 1 R

0 1

� �
; HI ¼ SHFS�1: ð2:13Þ

The corresponding blocks of HI have the form

HI ¼ H0; VMI ¼ VMF ; ð2:14Þ
VIM ¼ VFM þRHF
M �H0R ¼ �H0R; ð2:15Þ
HI
M ¼ HF

M �VMFR: ð2:16Þ
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In what follows we denote wave functions byWQðtÞ with Q being the representation index, either F or I . This
completes the construction of the Hamiltonian representation of Maxwell’s theory for linear passive media.

Boundary conditions at medium interfaces and possible scatterers (targets) are not imposed on elec-
tromagnetic fields, but rather they are enforced dynamically by allowing the medium parameters to be

discontinuous functions. The fundamental solution of (2.11)

WF ðtÞ ¼ etH
F
WF ð0Þ; tP 0 ð2:17Þ

is well defined for discontinuous ‘‘potentials’’ VMF and VFM , for example, by means of the Kato–Trotter

product formula used in the path integral representation of (2.17) as shown in [14].
3. Examples of dispersive media

3.1. The Lorentz model

The Hamiltonian formalism for the Lorentz model has been used in [15] to develop a finite differencing

algorithm to study the propagation of an electromagnetic pulse in Lorentz media. Here we derive an ex-

plicit form of the Hamiltonian for the Lorentz model which is used in Section 5 for the stability analysis of
our algorithm. The Lorentz model of a passive medium is based on the assumption that the medium

magnetization is zero, M ¼ 0, while the medium polarization is described by a set of decoupled second-

order differential equations [6]

€Pa þ 2ca _Pa þ x2
aPa ¼ x2

paE; P ¼
XN
a¼1

Pa; ð3:1Þ

where xa are resonant frequencies, ca are damping coefficients, and xpa are plasma frequencies. As has been

pointed out, no boundary conditions are imposed on electromagnetic fields at medium and/or target in-

terfaces. Instead, the coupling constants xpa ¼ xpaðrÞ are allowed to have discontinuities at medium in-

terfaces, or, from the physical point of view, they remain smooth but change rapidly, kwj$xP j=xp � 1, at
the interface, where kw is a typical wave length of the incident wave packet. The initial value problem is

solved in the space of square integrable wave functions. Initial conditions for the response field are

Pðt ¼ 0Þ ¼ _Pðt ¼ 0Þ ¼ 0.

Consider 2N real vector fields, nj, j ¼ 1; 2; . . . ; 2N , such that

Pa ¼ ðxpa=xaÞn2a�1; ð3:2Þ
_n2a�1 ¼ xan2a;
_n2a ¼ �2can2a � xan2a�1 þ xpaE: ð3:3Þ

Thus, the original system of second order equations has been converted into a first order system. The

operator R is defined by (3.2). After simple algebraic transformations, we infer that

VFM ¼ ðVFM1;VFM2; . . . ;VFMN Þ; VFMa ¼
0 �xpa

0 0

� �
; ð3:4Þ
VMF ¼ �Vy
FM ; ð3:5Þ
HF
M ¼ diagðHF

M1;H
F
M2; . . . ;H

F
MN Þ; HF

Ma ¼
0 xa

�xa �2ca

� �
; ð3:6Þ
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where the dagger in (3.5) stands for Hermitian conjugation, and diag indicates that the corresponding

matrix is block-diagonal with blocks listed in the order from the upper left to lower right corners. Note that

the matrices VFMa and HF
Ma act on a six- dimensional column na composed of two three-vectors, n2a�1 and

n2a. Therefore they should be understood as composed of four 3� 3 blocks. Each block is obtained by

multiplying the unit matrix by the number indicated in place of the corresponding block in VFMa and HF
Ma.

Another convenient way to introduce the Hamiltonian formalism is to use N complex vector fields fa
which satisfy the first order differential equation

_f ¼ kafa � ixpaE; Pa ¼
xpa

2ma
ðfa þ �faÞ; ð3:7Þ

where ka ¼ �ca þ ima and ma ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a � c2a
p

. This representation is defined only if ca < xa (i.e., the attenuation

is not high). From the numerical point of view, solving a decoupled system of N first order differential

equation and taking complex conjugation (denoted here by an over bar) is less expensive than solving the

original system of second-order differential equations for the medium polarization. In general, there is

always a freedom of choosing a new basis for the auxiliary field space (2.9). If the evolution operator

expðtHQÞ is computed in one basis, it can be computed in another basis by a suitable similarity trans-
formation. This is an important observation because the auxiliary field basis can be chosen in a way that

facilitates computation of the evolution operator, e.g., to speed up simulations. For instance, in the

complex representation (3.7), the matter Hamiltonian HF
M is diagonal. The corresponding transformation

of auxiliary fields is given by

n2a�1

n2a

� �
¼ 1

2ma

xa xa

ka �ka

� �
fa
�fa

� �
� SM

fa
�fa

� �
: ð3:8Þ

To transform the whole system into this representation, the Hamiltonian HF is replaced by S�1HFS and

the wave function WF by SWF where S is block-diagonal with the unit matrix in the upper left (field)

corner and with SM in the lower right (matter) corner.

3.2. A simple model of the ionosphere

As an example of anisotropic dispersive media we consider the problem of electromagnetic waves in an

electronic plasma when an external magnetic field B0 is present. This can be used as a simple model that

describes propagation of an electromagnetic wave packet in the Earth’s ionosphere. The dispersion relation

for the frequencies of the different propagation modes can be written in the form [16]

x2ðx2 � x2
pÞðx2 � x2

p � c2k2Þ ¼ x2
Bðx2 � x2

pÞ½x2ðx2 � x2
p � c2k2Þ þ x2

pc
2ðk � bÞ2�; ð3:9Þ

where k is the wave vector, k is its magnitude, b is the unit vector in the direction of B0, xp is the plasma

frequency, and xB is the frequency of precession of a charged particle (electron) in a magnetic field. Clearly,

the propagation speed along the external magnetic field differs from that in the perpendicular direction. For

example, this effect would cause a specific distortion of the antenna radiation pattern in the ionosphere

(here B0 is the Earth’s magnetic field).
The dispersion relation (3.9) follows from the linearized equations describing an electron plasma coupled

to electromagnetic fields where hydrostatic pressure and collisions are neglected. It can also be deduced

from Maxwell’s equations in which the medium polarization satisfies the equation

€Pþ xBb� _Pþ x2
pP ¼ x2

pD: ð3:10Þ

Let the set of auxiliary fields consist of P and n defined by _P ¼ xpn. Then in the induction representation

the total Hamiltonian in our master equation reads
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HI ¼

0 c$� 0 0

�c$� 0 c$� 0

0 0 0 xp

xp 0 �xp �xBb�

0
BB@

1
CCA: ð3:11Þ

Our formalism can easily be extended to a general linearized theory of an electron plasma. If v and n
represent the departures from equilibrium of an electron velocity vector field and an electron density, re-

spectively, then _P ¼ 4pen0v and $ � P ¼ �4pen with n0 being the electron density at equilibrium. The lin-

earized dynamical equation for the electron fluid is obtained from (3.10) by adding to its left-hand side two
more terms [16], a phenomenological collision term c _P with c being the collision frequency, and the hy-

drostatic pressure �k$ð$ � PÞ, where k ¼ m�1ðop=onÞ0, m is the electron mass, and ðop=onÞ0 is the rate of

change of pressure p relative to the density taken at n ¼ n0. The corresponding modification of the

Hamiltonian amounts to changing the third and fourth entries of the bottom row of the matrix in the right-

hand side of (3.11) as follows:

�xp ! �xp þ
k
xp

$ð$� Þ; �xBb� ! �c� xBb� :

Numerical applications of this formalism will be discussed elsewhere.
4. Energy and the norm of state vectors

The accuracy and convergence of a numerical algorithm is defined relative to some norm. Let us discuss

the choice of a norm in the space spanned by wave functions WQðtÞ. The discussion is limited to the Lorentz

model and the case of a non-homogeneous, non-dispersive medium (dielectric) which are used in our nu-

merical simulations. The ionosphere model discussed in Section 3.2 can also be treated in a similar way. The
details are omitted here.
4.1. The Lorentz model

Consider a multi-resonant Lorentz model with no attenuation, ca ¼ 0. The field and matter evolution

equations can be obtained from the variational principle for the action

S ¼
Z

dtL ¼
Z

dt
Z

dr
1

2
ðE2

"
� B2Þ þ 1

2

X
a

_#2
a

�
� x2

a#
2
a

�
þ P � E

#
; ð4:1Þ

where the polarization of the medium is expressed via matter fields as P ¼
P

a xpa#a. The electromagnetic

degrees of freedom are described by the vector and scalar potentials, respectively, A and u. The fields are

defined by E ¼ �$u� _A and B ¼ $� A. Units are chosen in this section so that c ¼ 1. The least action

principle for the scalar potential u leads to the Gauss law, $ �D ¼ 0, for the vector potential A to the

Maxwell’s equation, _D ¼ $� B, and for the matter fields #a to the medium polarization evolution equation
(3.1) of the Lorentz model with no attenuation, ca ¼ 0. The second Maxwell equation and the constraint for

the magnetic field follow from the relation B ¼ $� A by taking its time derivative and divergence,

respectively.

The energy of the system coincides with the canonical Hamiltonian which is obtained by a Legendre

transformation [1] of the Lagrangian L for the velocities _A and #a. The canonical momenta are

pa ¼ dL=d _#a ¼ _#a and P ¼ dL=d _A ¼ �E� P ¼ �D. Doing the Legendre transformation, we find the

canonical Hamiltonian (energy) of the system to be
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EðtÞ ¼
Z

dr
X
a

pa � _#a

 
þP � _A

!
� L ¼ 1

2

Z
dr E2

"
þ B2 þ

X
a

ðp2
a þ x2

a#
2
aÞ;
#

ð4:2Þ

where the Gauss law $ �D ¼ 0 has been used. Energy conservation follows directly from Noether’s theorem

[1] applied to the time translation symmetry of the action (4.1), _EðtÞ ¼ 0. Eq. (4.2) becomes the conven-

tional expression for electromagnetic energy in a passive medium [6] when pa and #a are replaced by the

corresponding solutions of the equations of motion with initial conditions paðt ¼ 0Þ ¼ #aðt ¼ 0Þ ¼ 0.

An important observation is that the Noether integral of motion (4.2) coincides with the L2 norm
squared of the corresponding state vector

E ¼ 1

2

Z
dr WF yWF � ðWF ;WF Þ ¼ ðWI ; lWIÞ; ð4:3Þ

where l ¼ S�1yS�1 > 0. This follows from the fact that, if we identify n2a ¼ pa and n2a�1 ¼ xa#a, the
Hamiltonian equations of motion, _#a ¼ dE=dpa and _pa ¼ �dE=d#a, coincide with (3.3) when ca ¼ 0. Note

that the canonically conjugated electromagnetic variables are A and �D. Therefore, coupling between the

electromagnetic and matter degrees of freedom in the Hamiltonian equations of motion is generated by the

term E2 ¼ ðD� PÞ2 in (4.2). Thus, in the absence of attenuation, the norm of the state vector is propor-

tional to the wave packet electromagnetic energy and, hence, is conserved.

Norm conservation also follows from anti-Hermiticity of the Hamiltonian HF y ¼ �HF if ca ¼ 0, while

(4.3) establishes a relation between the electromagnetic energy and the norm. In the induction represen-

tation, the norm in the measure space, defined by the positive definite operator l in (4.3), is also conserved
by construction. Consequently, the Hamiltonian is anti-Hermitian relative to the measure space scalar

product, HIyl ¼ �lHI .

Norm (energy) conservation can be used to control numerical convergence, especially when the aliasing

problem in the fast Fourier transform is present, e.g., when parameters of the medium are discontinuous

functions in space. In a properly designed algorithm the loss of energy (norm) due to attenuation should be

controlled by the symmetric part of the Hamiltonian operator

_EðtÞ ¼ �
X
a

ca

Z
dr n22aðtÞ �

1

2
ðWF ðtÞ;VF

c W
F ðtÞÞ6 0; ð4:4Þ

where VF y
c ¼ VF

c ¼ ðHF y þHF Þ=26 0 (a negative semidefinite operator) which is, in this case, a diagonal

matrix with non-positive elements.
4.2. Non-dispersive media

If the medium in question does not have dispersion and absorption, the formalism is simplified. Let

e ¼ eðxÞ be the dielectric constant of the medium, D ¼ eE. If the medium is not isotropic, then e is a

symmetric positive definite 3� 3 matrix everywhere in space. We rewrite Maxwell’s equations in the form

_wIðtÞ ¼ HGw
IðtÞ; HG ¼ 0 c$�

�c$� ðe�1Þ 0

� �
; ð4:5Þ

where the parentheses in mean ðe�1Þ that the induction D is first multiplied by e�1 and then the curl of the

resulting vector field is computed. Consider the scalar product

ðwI
1; lew

I
2Þ ¼

Z
dr wIy

1 lew
I
2; le ¼

e�1 0

0 1

� �
: ð4:6Þ
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The Hamiltonian is anti-Hermitian with respect to this measure space scalar product, Hy
Gle ¼ �leHG.

Therefore the corresponding norm is preserved under the time evolution generated by expðtHGÞ, that is,
ðwIðtÞ; lew

IðtÞÞ ¼ ðwIð0Þ; lew
Ið0ÞÞ. The electromagnetic energy of the wave packet is conserved because it is

proportional to the measure space norm of the initial state vector.
5. The algorithm

5.1. The grid representation

In the grid representation of our master equation _WQ ¼ HQWQ, the Hamiltonian becomes a bounded
operator (a finite matrix). The stability analysis of our algorithm given below applies to bounded Hamil-

tonians defined in this section via the discrete Fourier transform on a uniform grid. In what follows all

operators are understood in the sense defined here. For this reason, we summarize briefly the grid repre-

sentation we use.

Consider an equidistantly spaced finite one-dimensional grid with periodic boundary conditions. A

generalization to higher dimensional rectangular grids is straightforward. Let Dz be the grid step. The

original Hilbert space is projected onto a Euclidean space, WQðzÞ ! WQ
n � WQðnDzÞ, where the integer

n ¼ 0; 1; . . . ;N � 1 enumerates the grid points. In the grid representation the action of a position dependent
operator VQ ¼ VQðzÞ is defined by

VQðzÞWQðzÞjz¼nDz � VQðnDzÞWQ
n : ð5:1Þ

Let kz be a wave vector. The reciprocal grid defines wave vectors supported by the grid, kz ¼ jk0, where an
integer-valued variable j ranges from �N=2 to N=2� 1, and k0 ¼ 2p=L with L ¼ NDz being the spatial size

of the grid. The grid size N is assumed to be even. Thus, the admissible values kz lie in the interval

½�p=Dz; p=Dz�. LetFjn be a unitary matrix whose action onWQ
n defines the discrete Fourier transformation.

Numerically the action ofF or Fy on state vectors is performed by the fast Fourier transform method. Let

HQ
0 ¼ HQ

0 ðozÞ depend only on the derivative operator. Then its action in the grid representation is defined

by

HQ
0 ðozÞWQðzÞjz¼nDz �

X
n0

X
j

ðFyÞnjH
Q
0 ðijk0ÞFjn0W

Q
n0 : ð5:2Þ

Finally, the action of a product ofVQ andHQ
0 on any state vector is understood as multiplication of WQ

n by

the corresponding matrices, defined in (5.1) and (5.2), in the order specified in the product. The main

advantage of using the Fourier basis is an exponential convergence (versus a polynomial one in finite
differencing schemes) [7] as the grid size increases, which allows one to substantially increase the accuracy of

simulations.
5.2. The Gauss law

Another advantage of the Fourier basis is that the Gauss law is enforced at no extra computational cost.

In the grid representation defined above, the Gauss law (2.4) requires that the Fourier transforms of the

inductions ~DðkÞ and ~BðkÞ remain perpendicular to the reciprocal grid vector k at any moment of time. In
our algorithm, as we shall show shortly, the time evolution is generated by applying powers of the

Hamiltonian to the wave function. In the induction representation, the action of powers of HI always

produces the cross product k� ~CðkÞ, for some ~CðkÞ regular at k ¼ 0, in the entries ofWI that correspond to

the electromagnetic inductions as one can infer from (5.2). Hence, in the grid representation the wave
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function ðHIÞmWI satisfies the Gauss law for any power m because of the trivial identity k � ðk� ~CðkÞÞ ¼ 0

valid for any vector k of the reciprocal grid.

It should be noted that a high accuracy of the Gauss law is essential to achieve a high accuracy of
simulated electromagnetic fields near medium interfaces.
5.3. Improving sampling efficiency by changing variables

As is well known from Fourier analysis, the convergence rate can be affected for functions which have

discontinuities [3]. The latter is, unfortunately, the case in electromagnetic scattering problems [6]. Suppose

there is an interface between two media. It can be deduced from the dynamical Maxwell’s equations that the

components of electric and magnetic fields, E and H, tangential to the interface must be continuous,
provided there is no surface electric current on the interface. From the Gauss law it follows that compo-

nents of the inductions, D and B, normal to the interface must be continuous, provided there is no surface

charge on the interface. In contrast, normal components of the fields and tangential components of the

inductions can be discontinuous. Their discontinuities are determined by discontinuities of medium pa-

rameters (e.g., discontinuities in the plasma frequencies in Lorentz models). Therefore, in either the in-

duction or field representation, there are components which suffer discontinuities at the interface. The only

way to cope with the problem, while still keeping to use the Fourier basis, is to make the grid finer [3]. This

would lead to a substantial waste of computational resources because the sampling efficiency should only be
enhanced in the neighborhood of medium interfaces. Here we increase the sampling efficiency by a change

of variables.

Let z be a physical coordinate. Consider a change of variables defined by z ¼ f ðyÞ, where y is an auxiliary

coordinate. An equidistant grid yn ¼ nDy, with n being integers, of the auxiliary coordinate generates a non-
uniform grid of the the physical coordinate, zn ¼ f ðnDyÞ. Assuming Dy to be sufficiently small and f ðyÞ
sufficiently smooth, the physical grid spacing can be approximated as

Dzn ¼ znþ1 � zn � Dyf 0ðnDyÞ:

By making the derivative 0 < f 0ðyÞ6 1 in some designated areas, one can achieve a desired local grid

density in the physical space, while keeping the total grid size fixed. If it is necessary to increase the

sampling efficiency in the vicinity z ¼ 0, one can take f 0ðyÞ ¼ 1� a0½1þ b20y
2��1

, where 0 < a0 < 1, and,

hence,

f ðyÞ ¼ y � a
b
tan�1ðbyÞ � y � gðy; a; bÞ:

By adjusting parameters a and b, the local grid density can be changed as desired. Consequently, if the

sampling efficiency is to be enhanced at several points yi, a suitable change of variables can be of the form
f ðyÞ ¼

P
i gðy � yi; ai; biÞ. The fast Fourier transform is applied on a uniform grid of the auxiliary variable.

After the change of variables, the integration measure in the scalar product and the derivative become,

respectively, dz ¼ dyf 0ðyÞ and oz ¼ ½f 0ðyÞ��1
oy . When projected on a uniform grid of the physical coordinate

bymeans of (5.2), the derivative operator oz becomes an anti-Hermitian matrix.When the rule (5.2) is applied

on a uniform grid of the auxiliary coordinate y, the derivative operator oz is no longer represented by an anti-

Hermitian matrix, although it is still an anti-Hermitian linear operator, but in the measure space where the

scalar product is defined with the weight f 0ðnDyÞ at each lattice site. From the numerical point of view it is

convenient to have an explicitly anti-Hermitian matrix representation of the derivative on the grid. Due to
round-off errors, the exact anti-Hermiticity of oz in the measure space can be violated in the grid represen-

tation, which, in turn, may lead to numerical instabilities in simulations. For this reason, the wave function is

rescaled by the square root of the Jacobian [5], WQ !
ffiffiffiffi
f 0p
WQ so that the integration measure becomes dy
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leading to the conventional Euclidean scalar product in the grid representation (with a uniform unit weight at

each grid site). In such a representation, the derivative operator oz ! ½f 0��1=2
oy ½f 0��1=2

becomes again an

explicitly anti-Hermitian matrix in the grid representation defined by the rules (5.1) and (5.2).
5.4. A modified temporal leapfrog scheme

In this section the representation index Q is suppressed to avoid piling-up indexes in formulas. A con-

ventional temporal leapfrog method of solving the Schr€odinger equation is based on the iteration scheme

[2]

Wðt þ DtÞ ¼ Wðt � DtÞ þ 2DtHWðtÞ; ð5:3Þ

so that the wave function in the consecutive time moment is computed from the wave function at two
previous moments of time, where Dt is the time step. The leapfrog algorithm is conditionally stable for an

anti-Hermitian H, which is true for non-dispersive media, but is not the case for media with absorption.

To investigate the stability, let us introduce the amplification matrix GðDtÞ for the leapfrog algorithm so

that Wðt þ DtÞ ¼ GðDtÞWðtÞ. From (5.3) it follows that GðDtÞ satisfies the equation G2ðDtÞ�
2DtHGðDtÞ � 1 ¼ 0 which has two formal solutions

Gð�ÞðDtÞ ¼ HDt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2Dt2

p
: ð5:4Þ

The stability of the algorithm requires that the energy norm of both approximate solutions ½Gð�ÞðDtÞ�nWð0Þ
must be uniformly bounded for n > 0. The necessary (but not sufficient) condition is the von Neumann

condition that the spectral radius of the amplification matrix does not exceed 1. If a complex number Reiu is

an eigenvalue of DtH, then the von Neumann condition implies that u ¼ �p=2 and R2
6 1. In other words,

eigenvalues of DtH must be imaginary and their magnitude should not exceed 1. If in addition we demand

that the Hamiltonian is diagonalizable, then conditional stability can be achieved for sufficiently small Dt.
Indeed, in this case there exists a non-singular S such that

H ¼ S�1HSS; Hy
S ¼ �HS; ð5:5Þ

and DtHS satisfies the von Neumann condition. Since H and HS have the same eigenvalues, the am-

plification matrices forH andHS are related by the same similarity transformation (5.5). Hence, the norm

of a wave function obtained by the action of powers of (5.4) on an initial wave function is uniformly

bounded. Note also that the Hamiltonian (5.5) is anti-Hermitian relative to the measure space scalar

product, Hyl ¼ �lH, where l ¼ S�1yS�1. Stability can also be proved via the equivalence of the con-

ventional Euclidean norm and the l-norm [14].

In the case of non-dispersive media, the HamiltonianHG is anti-Hermitian in the measure space, and the
von Neumann condition is fulfilled if

Dtckemax 6 1; ð5:6Þ

where kemaxis the maximal norm of all wave vectors in the medium which can be estimated by
ffiffiffiffiffiffiffiffiffi
qðeÞ

p
kmax with

kmax being the maximal wave vector of the initial pulse in vacuum and qðeÞ the maximal spectral radius of

the symmetric matrix eðxÞ over x (or simply the maximum of eðxÞ if the medium is isotropic). This can be

understood from the following principle [17]. A finite difference scheme with variable coefficients is stable if

all the corresponding schemes with frozen coefficients (i.e., fixed to a particular value everywhere in space)

are stable.

The von Neumann condition cannot be met if absorption is present because eigenvalues of the
Hamiltonian must have real parts in order to account for exponential attenuation of field amplitudes. To
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circumvent this difficulty, the leapfrog scheme is modified in the following way [14]. We assume the

Hamiltonian to be diagonalizable. The lack of eigenvectors of the Hamiltonian typically leads to solutions

whose amplitudes grow polynomially in time [14]. This feature cannot be present in a physically reasonable
model of passive media. So our assumption is justified from the physical point of view and, yet, the Lorentz

model Hamiltonian is indeed diagonalizable. Let

H ¼ H0 þV; ðW;VWÞ6 0 ð5:7Þ

for any W in the Hilbert space and the von Neumann condition is satisfied for H0, i.e., H0 has imaginary

eigenvalues. The split (5.7) can be achieved in many ways. For instance, H0 can be obtained from H by

setting all parameters responsible for attenuation to zero. In a physically acceptable model, the energy must

be conservative in an absorption free medium and so must be the energy norm of wave vectors, and,

therefore, the corresponding Hamiltonian must be anti-Hermitian (relative to the energy induced scalar
product). In the Lorentz model this is easily seen in the field representation if we set H0 ¼ Hjca¼0 which is

explicitly anti-Hermitian (see Section 3). Then V is diagonal with matrix elements being zeros and �2ca.
Another possibility is to identify H0 with the Hamiltonian in the vacuum, then V ¼ H�H0 must be

negative semidefinite in order to model exponential attenuation in passive media. Finally, one can also split

the Hamiltonian into the sum of Hermitian and anti-Hermitian parts.

After choosing a suitable split (5.7) we make a substitution WðtÞ ¼ expðtVÞUðtÞ in the original evolution

equation (2.11). The new wave function UðtÞ satisfies the equation with a time dependent Hamiltonian

_UðtÞ ¼ e�tVH0e
tVUðtÞ � HðtÞUðtÞ; ð5:8Þ

to be solved with the same initial condition Uð0Þ ¼ Wð0Þ. Applying the leapfrog method to (5.8) we get

Uðt þ DtÞ ¼ Uðt � DtÞ þ 2DtHðtÞUðtÞ valid up to OðDt3Þ. Returning to the initial variables, we arrive at the

following recurrence relation

Wðt þ DtÞ ¼ Lð2DtÞWðt � DtÞ þ 2DtLðDtÞH0WðtÞ; ð5:9Þ

where LðDtÞ ¼ expðDtVÞ. The amplification matrix, Wðt þ DtÞ ¼ GLðDtÞWðtÞ, for the recurrence (5.9)

satisfies the equation

GLðDtÞ ¼ Lð2DtÞG�1
L ðDtÞ þ 2DtLðDtÞH0: ð5:10Þ

Adeviation of the approximate solutionGn
LðDtÞWð0Þ from the exact solution relative to the energy norm is of

order Dt2 for any n > 0. Thus, the scheme is convergent and, hence, a conditional stability exists for a suf-

ficiently small Dt > 0 according to a general theorem of Kantorovich [2] that establishes the general equiv-

alence between convergence and conditional stability. The conditional stability of (5.9) can be understood

from the following observation. Solving (5.10) by perturbation theory in Dt, it is not hard to find that

GLðDtÞ � GV ðDtÞ ¼ Dt3KðDtÞ; GV ðDtÞ ¼ LðDt=2ÞG0ðDtÞLðDt=2Þ; ð5:11Þ

where KðDtÞ is regular in the vicinity of Dt ¼ 0 and vanishes whenever H0 and V commute, and G0ðDtÞ is
the amplification matrix when V is set to zero. The von Neumann condition is satisfied for G0ðDtÞ for a
sufficiently small Dt > 0. Hence, powers of G0ðDtÞ applied to Wð0Þ cannot produce any exponential norm

growth. Powers of GV ðDtÞ differ from those of G0ðDtÞ by factors that are powers of eDtV and, hence, can
only produce exponential attenuation of the amplitude. Indeed, let WV ðtÞ ¼ etVWð0Þ. Then

o=otðWV ;WV Þ ¼ 2ðWV ;VWV Þ6 0 since V is negative semidefinite. Thus, the approximate solution pro-

duced by the amplification matrix GV ðDtÞ has no exponential growth, while differing, relative to the energy

norm, from that produced by GLðDtÞ by order of OðDt2Þ. Therefore the modified leapfrog scheme can be

made conditionally stable and as accurate as desired by reducing the time step.
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It should be noted that our arguments do not prove that there cannot be any exponential growth of the

norm kWðtÞk ¼ ðWðtÞ;WðtÞÞ1=2 in the modified leapfrog scheme (5.9). All we can claim is that

kWðtÞk ¼ kGn
LðDtÞW0k6 expðKtÞ, t ¼ nDt, which is also true for the conventional leapfrog scheme

ðGL ! GÞ. The difference is that in the modified leapfrog scheme K 	 OðDt2Þ as we have argued (a con-

sequence of (5.11) and uniform boundedness of powers of GV , that is, kGn
VWk6 kWk, nP 0), while in the

conventional leapfrog scheme the constant K is independent of Dt. Hence a possible artificial exponential

growth of the norm cannot be suppressed by reducing the time step in (5.3), while it can be done in (5.9).
5.5. Example of a Lorentz model

To illustrate our general method we give an example of a Lorentz model commonly used to describe
dispersive media. In the field representation of the Hamiltonian for the Lorentz model, we make the fol-

lowing decomposition:

HF ¼ H0 VFM

VMF 0

� �
þ 0 0

0 HM
F

� �
� HF

0 þVF : ð5:12Þ

Substituting this decomposition into (5.9) we arrive at the following scheme:

wF ðt þ DtÞ ¼ wF ðt � DtÞ þ 2DtH0w
F ðtÞ þ 2Dt

X
a

VFMan
aðtÞ; ð5:13Þ
naðt þ DtÞ ¼ e2DtH
F
Manaðt � DtÞ þ 2DteDtH

F
MaVMFaw

F ðtÞ; ð5:14Þ
etH
F
Ma ¼ e�cat cosh~mat

"
þ sinh~mat

~ma
ðHF

Ma þ caÞ
#
; ð5:15Þ

where ~ma ¼ ðc2a � x2
aÞ

1=2
and the six-dimensional columns na were introduced in Section 3. The exponential

(5.15) is easy to compute by expanding HF
Ma in the Pauli matrix basis (a basis for the Lie algebra suð2Þ) and

then by using the well-known formula for the exponential of a linear combination of Pauli matrices. For small

attenuation, ca < xa, we get ~ma ¼ ima. The hyperbolic functions in (5.15) become trigonometric ones and ~ma is
replaced by ma. Eigenvalues of the matter Hamiltonian are ka ¼ �ca � ~ma. Hence, Re ka < 0 and amplitudes of

the matter fields are always exponentially attenuated as t ! 1, unless ca ¼ 0 leading to Re ka ¼ 0.

The stability is ensured if HF
0 satisfies the von Neumann condition. Let kmax be the maximal norm of all

wave vectors of the initial wave packet and xmax
p be the maximal value of xp ¼ ð

P
a x

2
paÞ

1=2
as a function of

position, then a sufficient condition for stability reads

Dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2max þ ðxmax

p Þ2
q

6 1: ð5:16Þ

Here the idea of the frozen coefficients [17] has been used again. The left-hand side of inequality (5.16) is

nothing but the spectral radius of DtHF
0 with frozen plasma frequencies so that xp ¼ xmax

p . Note that it is not

difficult to solve the characteristic equation forHF
0 with frozen plasma frequencies in the grid representation

introduced in Section 5.1. The scheme (5.9) becomes especially simple in the case of small attenuation

ca < xa. In the complex representation of the auxiliary fields (3.8) (cf. (3.7)) the matter HamiltoniansHF
Ma are

diagonal and the action of its exponential is reduced to multiplication by a complex number eimaDt.

Finally, it should be mentioned that, by rearranging operators in the split, namely, by moving VFM and

VMF to VF in (5.12), the stability condition (5.16) can be weakened to Dtckmax 6 1. This would come at the

price of having a more complicated expression for LðDtÞ. In the case of the Lorentz model it can still be
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computed analytically. The new split can also be viewed as the use of the induction representation in the

modified leapfrog scheme, HI ¼ HI
0 þVI where HI

0 contains only blocks of HI with the $ operator. The

proof of the weaker stability condition can be found in [14].
6. Metal gratings in the Drude formalism

Here we apply our method to gratings made of a metal whose optical properties are described by the

Drude formalism. This is an actual numerical scheme used in simulations in Section 7. The metal dielectric

constant as a function of frequency is given by

eðxÞ ¼ 1þ ~vðxÞ ¼ 1�
x2

p

xðxþ igÞ ;

where xp is the plasma frequency, which is zero in the vacuum and constant in the region occupied by the

metal as shown in Fig. 1, and g is the absorption. The model coincides with a one-resonant Lorentz model if

x0 ¼ 0 and g ¼ 2c. To satisfy the Gauss law exactly in simulations, we use the induction representation
according to Section 5.2. An auxiliary field is chosen so that its first component equals P and the second is

denoted n. The Hamiltonian evolution equations are taken in the form

_D ¼ cr� B;

_B ¼ �cr� ðD� PÞ;
_P ¼ gn;

_n ¼ �gn�
x2

p

g
ðD� PÞ:

To apply the modified leapfrog scheme the Hamiltonian is split into the sum

HI ¼

0 cr� 0 0

�cr� 0 cr� 0

0 0 0 �g
�x2

pg
�1 0 x2

pg
�1 �g

0
BB@

1
CCA ¼ HI

0 þVI ; VI ¼ diagð0; 0; 0; �gÞ: ð6:1Þ

Clearly, VI is negative semidefinite because g > 0. The stability of the modified leapfrog scheme requires

that eigenvalues of HI
0 have zero real parts. This is indeed the case. In the grid representation, non-zero

roots of the characteristic polynomial det ðHI
0 � kÞ are k ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2 þ x2

p

q
with xp being frozen. The

scheme is, therefore, stable if the time step is chosen so that the condition (5.16) is satisfied. In particular,

kmax can be set to k0 being the step of the reciprocal lattice and xmax
p is the plasma frequency of the metal

(silver in our simulations, see Section 7). An explicit form of the modified leapfrog scheme for the split (6.1)
reads

Dðt þ DtÞ ¼ Dðt � DtÞ þ 2cDtr� BðtÞ;
Bðt þ DtÞ ¼ Bðt � DtÞ � 2cDtr� ½DðtÞ � PðtÞ�;
Pðt þ DtÞ ¼ Pðt � DtÞ � 2gDtnðtÞ;
nðt þ DtÞ ¼ e�2gDtnðt � DtÞ � 2Dtx2

pg
�1e�gDt½DðtÞ � PðtÞ�:

The action of the curl is defined by (5.2) in combination with a change of variables that enhances the

sampling efficiency near the metal–vacuum interface as suggested in Section 5.3. Details are in Section 7.
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Fig. 1. A schematic representation of the studied system. The incident wave packet propagates along the normal to the slab containing

the gratings (z-direction).
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7. Results for extraordinary transmission gratings

To test our method we applied it to study transmission properties of metal and dielectric gratings

suspended in vacuum. Transmission and reflection gratings have been the subject of a number of experi-

mental and theoretical works [9–12,18]. The interest is stimulated by nearly 100% transmission or reflection
within a narrow wavelength range with the possibility of using such grating as efficient filters. Moreover,

extraordinary optical transmission has been observed in the 2D hole arrays [8], further stimulating theo-

retical and experimental interest in transmission properties of nanostructure materials [13].

In Fig. 1 we schematically represent our system comprising a metallic or dielectric slab with gratings. D is

a grating period, a the size of the grating and h its thickness. For the sake of comparison with previously

published results we have chosen D ¼ 1:75 lm and a ¼ 0:30 lm. Transmission and reflection coefficients

are computed as a function of the grating thickness h. An incident electromagnetic wave packet propagates

along the z-direction, normal to the slab. The polarization is such that the electric field vector is perpen-
dicular to the gratings, while the magnetic field is parallel to them (the so-called p-polarization). Calcu-

lations are performed in a finite ðx; zÞ box of the size �15D < z < 15D, �D=2 < x < D=2. A uniform mesh

of typically 256 knots is used in the x-direction and a non-uniform mesh of 512 knots generated by the

change of variables is used in the z-direction. A change of variables is used to enhance the sampling effi-

ciency near the two interfaces in the z-direction. Periodic boundary conditions are ensured in x through the

pseudospectral approach based on the fast Fourier transform. To suppress any artificial reflection of the

wave packet, absorbing layers are introduced at the box boundaries z ¼ �15D. The initial wave packet is

Gaussian, which allows us to obtain transmission (reflection) coefficients within the entire frequency
bandwidth of the initial wave packet by a single simulation. In what follows we are mainly interested in

transmission (reflection) of the radiation with wavelengths larger than the grating period (zero order dif-

fraction). Thus, reflected or transmitted waves propagate in the direction of the z-axis, the same as the

incident radiation. Note, however, that this is not a limitation of our method which allows for a priori

extraction of the entire scattering matrix for all wave vectors.

In Fig. 2 we show transmission and reflection coefficients obtained for metallic gratings of variable

depth. The dielectric response of the metal is described within the Drude formalism (see Section 6). Fol-

lowing [10] we use xp ¼ 9 eV and g ¼ 0:1 eV representative for silver. As clearly seen in the figure, the
transmission coefficients exhibit narrow resonances for certain wavelengths. With increasing thickness of

the gratings, h, the number of resonant structures increases. Our results are in a full agreement with pre-

viously published theoretical studies [10]. The only difference being that the model used in [10] assumes



Fig. 2. Calculated zero-order transmission (solid lines) and reflection (dashed lines) coefficients for metallic gratings described in the

text. The results are presented as a function of the wavelength k of the incident radiation measured in the units of the period of the

gratings, D. Different panels of the figure correspond to the different thickness h of the gratings, as indicated.
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perfect metal surfaces inside the gratings, neglecting possible absorption of the radiation. This leads to

100% transmission at the resonant frequencies. In our case, part of the radiation is absorbed by the metal so

that the transmission never reaches 100%.

The observed structures in transmission are associated with resonant modes of the electromagnetic field
produced by coupled surface electromagnetic modes (called surface plasmon polaritons) and waveguide

modes inside the gratings. Some of these resonances posses relatively long lifetimes. This can be immedi-

ately inferred from their width, as, e.g., the resonance located at k ¼ 1:1D in the case of the grating with

thickness h ¼ 1:4 lm.

Another way to observe the trapped field resonances is to look at the time dependence of the field

transmitted in the z-direction. The signal in Fig. 3 is registered by a detector placed at the distance of

3:5D behind the gratings. As seen in the figure, as soon as the resonances are populated by an incident

25-fs long pulse, they radiate a field during at least 125 fs. Here the radiation time is determined by the
lifetime of the narrowest resonance located at k ¼ 1:1D. It is worth mentioning that, as shown by

the sum of the transmission and reflection coefficients, the total absorption is largest at the resonance

positions, i.e., when the interaction time between the radiation (trapped mode) and the metal is

large.



Fig. 3. The electric field measured by a detector placed behind the metallic gratings with thickness h ¼ 1:4 lm. Only the field cor-

responding to the zero-order transmitted wave propagating along the z-axis is represented. It is obtained by the Fourier analysis of the

x-coordinate dependence of the field at the detector position. The signal is shown as a function of time measured in femtoseconds.
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Finally, Fig. 4 shows the field structure of a trapped mode corresponding to the narrowest resonance

observed with the h ¼ 2:4 lm thickness grating. The Ex component of the electric field is presented. It is

obtained via sufficiently long time propagation so that contributions from less long-living states vanish.

In Figs. 5 and 6 we show reflection coefficients for dielectric gratings suspended in vacuum. Simulations

are performed using the conventional leapfrog scheme (5.3) applied to (4.5). Since attenuation is absent, the

scheme is stable if the time step satisfies (5.6). The dielectric material is modeled through a frequency in-
dependent dielectric constant e ¼ 2 (Fig. 5) and e ¼ 4 (Fig. 6). Only the reflection coefficient is shown here

since there is no absorption of the radiation in the dielectric so that the transmission can simply be inferred

from the unitarity of the scattering matrix. Without gratings the dielectric slabs are basically transparent in

both cases. Introducing grating structures results in a complete reflection of the incident radiation within an

extremely narrow wavelength bandwidth. The associated guided mode resonances have been extensively
Fig. 4. A snapshot of the x-component of the electric field, Ex for the grating thickness h ¼ 2:4 lm. The results are presented as a

function of x and z coordinates measured in units of D. Red and blue colors correspond, respectively, to positive and negative values of

the field. The snapshot has been produced after a sufficiently long propagation time so that the field pictured in it indeed corresponds to

the long-lived resonance giving enhanced transmission at k ¼ 1:15D (see Fig. 2). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)



Fig. 5. Calculated zero-order reflection coefficient for dielectric gratings with e ¼ 2. The results are presented as a function of the

wavelength k of the incident radiation measured in the units of the period of the gratings, D. Different panels of the figure correspond

to the different thickness h of the gratings, as indicated.
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discussed in the literature [18]. In the case of e ¼ 2 the resonances are so narrow that extraction of fre-

quency dependent transmission and reflection coefficients by the Fourier transform of the scattered wave

would require a too large propagation time (see also Fig. 7). We had to stop our wave packet propagation

before the radiation emitted by resonances ended. This explains why the reflection coefficients do not reach

their maximal value of 1 in this case. Consistent with the metal case, the number of resonant structures

increases with increase of the width h of the gratings. The width of resonances increases with e as follows
from the comparison of Figs. 5 and 6. Note also that resonances are associated with Fano profiles that

usually arise because of the interference between non-resonant and resonant contributions to the scattered

wave. Such narrow reflection structures in the case of dielectric gratings have been usually studied by

stationary methods in the frequency domain. An important advantage of the time-dependent study is that

one has an immediate access to all the details of the temporal evolution of electromagnetic fields in any

desired part of the system.

In Fig. 7 we show the time dependence of the field transmitted in the z-direction for gratings charac-

terized by e ¼ 2 and h ¼ 0:8 lm. With these parameters there is only one resonance in the reflection
spectrum. The signal is registered by a detector placed at the distance of 3:5D behind the gratings. First, we

observe that a 25 fs incident pulse is transmitted through the structure without modification. The lasing



Fig. 6. Calculated zero-order reflection coefficient for dielectric gratings with e ¼ 4. Results are presented as a function of the

wavelength k of the incident radiation measured in the units of the period of the gratings, D. Different panels of the figure correspond

to the different thickness h of the gratings, as indicated.

Fig. 7. The electric field measured by a detector placed behind the dielectric grating with thickness h ¼ 0:8 lm and dielectric constant

e ¼ 4. Only the field corresponding to the zero-order transmitted wave propagating along the z-axis is represented. It is obtained by the

Fourier analysis of the x-coordinate dependence of the field at the detector position. The signal is shown as a function of time measured

in femtoseconds.
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Fig. 8. A snapshot of the x-component of the electric induction, Dx for the dielectric grating with dielectric constant e ¼ 4 and

thickness h ¼ 0:6 lm. The results are presented as a function of x and z coordinates measured in units of D. Red and blue colors

correspond, respectively, to positive and negative values of the induction. The snapshot has been produced after a sufficiently long

propagation time so that the induction pictured in it indeed corresponds to the resonance giving enhanced transmission at k ffi 1:3D
(see Fig. 6). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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effect, when the transmitted field is followed by basically monochromatic radiation, can clearly be seen. For

readability reasons we could not show the complete time evolution in the figure, but the lasing effect lasts

for at least (!) 2 ps reflecting an extraordinarily long lifetime of the trapped resonant field. It is this radiation
which comes in the phase opposite to the corresponding harmonic in the transmitted initial pulse and leads,

finally, to a zero transmission at the corresponding frequency. The same lasing effect to the left of the

grating structure is responsible for a 100% reflection at the same frequency.

In Fig. 8 we show the typical structure of a field corresponding to a trapped (resonant) mode. The Dx

component of the electric induction is represented in the case of dielectric gratings with e ¼ 4. The thickness

of the dielectric slab is h ¼ 0:6 lm. Note that in contrast to the metal grating structure, the field in the

present case occupies the entire slab and not only the vacuum part of the grating.
8. Conclusions

We have developed a time domain algorithm for the initial value problem for Maxwell’s theory of linear

passive media. The algorithm is based on (i) the Hamiltonian formalism for evolution differential equations,

(ii) the Fourier pseudospectral method in which the sampling efficiency in designated space regions is en-

hanced by a suitable change of variables, and (iii) the modified leapfrog scheme. We have analyzed the

stability of the algorithm and found explicit stability conditions when passive media are described by multi-
resonant Lorentz models. We have implemented and tested our algorithm for extraordinary transmission

and reflection gratings whose optical properties have been studied in a number of theoretical and experi-

mental works. Numerical simulations based on our algorithm are shown to produce extremely accurate

data for the well studied far-field (zero-order diffraction) at relatively low computational costs. A single

simulation of an incident wideband wave packet is sufficient to determine transmission and reflection

properties of the gratings in the frequency range of the initial wave packet. In addition, our algorithm

allows us to see a real time dynamics of formation of the long-living resonant excitations of electromagnetic

fields in the grating as well as formation of the transmitted and/or reflected wave fronts in the entire fre-
quency range of the initial wave packet. It is believed that our algorithm would be useful for numerical

studies of other nanostructure materials.
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